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Abstract

Layup optimization of the maximum strength of laminated composites with internal ply-drops is performed by
genetic algorithm (GA). Interlaminar stresses are considered in estimating the strength of laminates and calculated
by the stress function based complementary virtual work principle. Out-of-plane stress functions are expanded in terms
of harmonic series through the thickness direction and initially satisfied the traction free boundary conditions of lam-
inates automatically. As the number of expansion terms is increased, stress concentration near the dropped plies is pre-
dicted with better accuracy. Since the proposed analysis is relatively simple and efficient in the prediction of
interlaminar stress concentration near the ply-drops, the layup optimization of composite laminates with dropped plies
considering interlaminar strength can be easily performed by GA. In the formulation of genetic algorithm, a repair
strategy is adopted to satisfy given constraints and multiple elitism scheme is implemented to efficiently find multiple
global optima or near-optima.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

To save weight when loads are non-uniform, the composite laminates with tapered thickness have com-
monly been manufactured by terminating, or dropping internal plies within the laminates. This is an impor-
tant method of tailoring stiffness in structures made from advanced composite materials. For example, it is
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recommended that there should be ply-drops in aircraft wing skins, in composite flexbeams of helicopter
rotor hubs, and near field joints in solid rocket boosters. Tapered composite structures create geometry
and material discontinuities near dropped plies of composite laminates, which cause high stress concentra-
tion, or singularity. The stress concentration initiates failure of the laminates and thus the prediction of
interlaminar stresses at the dropped plies is required in solving the optimization problem of a layup design.

Stress analysis near the dropped plies is similar to that of free-edge problem. Numerous research efforts
have been made to resolve serious stress concentration/singularity near the free edges and near the dropped
plies of composite laminates. However, since the difficulties occur during the process of obtaining the exact
singular elasticity solutions, approximate methods have been pursued which are based on numerical or ana-
lytical approaches. Although recently developed numerical methods consist of either finite element methods
or boundary integral methods, simple and reliable analytical methods are preferred in the preliminary de-
sign stage since they facilitate parametric study. After Pipes and Pagano (1970) proposed free-edge inter-
laminar stress analysis, linear elastic models and simple regular stress function-based approximation
methods have been proposed for interlaminar stress problems with free edges. Present analysis method
for tapered laminates is based on the stress function-based variational method of free-edge interlaminar
stresses proposed by Cho and Yoon (1999) and Cho and Kim (2000). In the case of the presence of free
edge at the boundary, the layup optimization considering bounded uncertainty of material properties were
conducted by Cho and Rhee (2003, 2004).

Fish and Lee (1989) showed the delamination effect of interlaminar stresses for laminates with internal
ply-drops. To analyze interlaminar stresses, Fish and Lee used 2-D finite element method. Botting et al.
(1996) reported the effect of ply-drop by using FEM and experiments. They used 3-D solid finite element
to analyze interlaminar stresses. Mukherjee and Varughese (1999) proposed global-local scheme for the
reduction of degrees of freedom. However, FEM approach requires large amount of computer resources.
Harrison and Johnson (1996) proposed a mixed variational formulation for reliable approximations of inter-
laminar stresses. A mixed formulation has an advantage in describing displacement-prescribed boundary
conditions and displacement continuity conditions at the interfaces between layers but it has too many pri-
mary variables. On the other hand, a stress function-based variational method shows simple and efficient
approximation in the prediction of interlaminar stresses only with stress variables. The present study is based
on complementary strain energy principle with stress variables only. It is essential in the optimization pro-
cedure to reduce computing time of objective function which is the strength of laminates in the present study.

In laminated composite structures, the layups of laminates can be arranged for the lightweight and/or
high performance of composite structures. In most structural designs using composite laminates, laminates
are restricted to some discrete sets of ply orientation angles such as 0°, £45° and 90°. This practical man-
ufacturing point of view requires the discretized optimization methodology for the layup design problem.
Genetic algorithm (GA) is considered as a powerful methodology for the discretized problems in which the
gradient of the objective functions is difficult to obtain. A considerable number of researches in design opti-
mization of composite structures have reported the employment of genetic algorithm. Le Riche and Haftka
(1993) proposed a genetic algorithm to optimize the stacking sequence of composite laminate for maximum
buckling load. A recessive-gene-like repair strategy was introduced by Todoroki and Haftka (1998) to han-
dle given constraints efficiently. Recently, Soremekun et al. (2001) applied the generalized elitist selection
(GES) scheme to the problems with many global optima and near-optima showing performance very close
to optimal. Because of random nature of GA, they easily produce alternative optima in repeated runs. This
property is particularly important in layup optimization because widely different layups can have very sim-
ilar performance.

In the tapered composite laminates, common design practice is weight minimization of laminates with
required stiffness constraints. However, in the present study, we perform the layup optimization for the
maximum strength of laminated composites with internal ply-drops by genetic algorithm (GA) with a
repair strategy and multiple elitism.
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2. Interlaminar stress analysis based on the complementary strain energy principle
2.1. Stress function based analysis
The geometry of composite laminates with internal ply-drops is given in Fig. 1. The laminate consists of

orthotropic materials. The plies have arbitrary angles relative to the x axis. The linear elastic constitutive
equations are assumed in each ply and they are expressed in the following form:
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From the first row of Eq. (1), following relationship is obtained:
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Substituting Eq. (2) into Eq. (1), all the strains can be expressed as
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Generalized plane strain states are assumed in the x direction and Lekhnitskii stress functions (1963) are
introduced to satisfy pointwise equilibrium equations automatically. These stress functions can be assumed
as homogeneous parts and particular parts as follows:

- N,,z? ’ Nyyz
F=Fy+F,= g2+ 37—, Y=, +y,= p()gi(,2) . + 7 (5)
? Z; 2H(y)’ e Z; 7 H(y)
where f; and p; are in-plane stress functions and g; is out-of-plane stress function which can describe tapered
geometry of laminates. Terms, N,,, and N,,, are longitudinal compression and in-plane shear, respectively.
Function H(y) is the thickness of tapered laminates and can be expressed as follows:

H(y) =z(y) — z(») (6)
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Fig. 1. Geometry of composite laminates with dropped plies.
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where z, and z, are functions of the top and bottom curves. All stress components are expressed in terms of
stress functions as follows:
o0*F O*F 0*F oy oy
02(0,) ==, 03(02) ===, 04(0,) =—5—=, 05(0x)=—%, 06(0y)=—= 7

2( }IV) 622 3( ) ayz 4( )’Z) ayaz 5( X) ay 6( (}) dz ( )
Homogeneous parts of stress functions are enough to analyze interlaminar stresses under thermal loading.
However, it is not enough to analyze interlaminar stresses under mechanical loadings. Therefore, the par-
ticular parts of stress functions are introduced to describe the effects of mechanical loadings. In the present
model, out-of-plane stress distributions are governed by the homogeneous parts of stress functions. By
substituting Eq. (5) into Eq. (7), the stresses are expressed in terms of stress functions as follows:

Ny, ,zEHZV
0y = figiee T 03 = i€ + 201,81y + [i8iyy + o
01 = —fis8iz: — [i8iye + 5, 05 = —Di,8i. — P&y T (8)

06 = _pigi.zz + %
The change of tapered thickness is assumed to be linear to make the formulation simple. Then, second
derivative of thickness is zero and interlaminar normal stress is expressed in a simple form as shown above.
Schematic view of tapered laminates is shown in Fig. 2. Let n and ¢ denote normal and tangential direc-
tions to the curved boundary. By applying the usual stress transformation rule to the preceding results, we
obtain

.2 .
Opn = 028IN"Y;, + 03008°), — 204 siny, cosy, = o + a?,

0m = (02 — 03) siny, cos y, + a4(cos’y, — sin’y,) = o’ + ab, 9)
Oxpn = 05CO8 Y, — 0¢ sin Yk = O-)hcn + ng
Since these interlaminar stresses are composed of homogeneous and particular parts of stress functions,
interlaminar stresses can be divided into homogeneous and particular parts as shown in Eq. (9).
The schematic view of tapered laminates shows traction free boundary conditions at the top and bottom

surfaces, C;. When mechanical loading is applied, edge boundaries, C,, are prescribed by stresses. There-
fore, the boundary conditions along boundaries, C. and C, can be expressed as follows:
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Fig. 2. Schematic view of tapered laminates.
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{ 02, 04,0¢ = prescribed on C.(edge boundaries) (10)

Own = O = 0y, = 0 on Cs(top and bottom surface)

From C, boundary conditions, the initially assumed out-of-plane functions must satisfy traction free
boundary conditions at the top and bottom surfaces, i.e. the stress functions and their first and second
derivatives have to be zero in those regions. Therefore, the following harmonic function is assumed as
the out-of-plane stress function:

gir,2) = % sin{inn} — sin{(i+2)m} (=1,2,...,n) (11)

i+2
where

o z—2z(y)
-~ z2(y) — () (12)

To avoid trivial case, even functions of g; are selected. From Eq. (11), homogeneous parts of interlaminar
stresses automatically satisfy C; boundary conditions.

Trigonometric values should be expressed in terms of thickness location z to verify whether particular
parts of interlaminar stresses satisfy Cs boundary conditions or not. The slope of each interface, y,, as
shown in Fig. 2 is given as follows:

tany, =z, (13)
From Eq. (13), one can get cosine and sine values as follows:
1
cosy, = siny, = Zhy (14)
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Substituting Eq. (14) into Eq. (9), the particular parts of interlaminar stresses at each interface are ex-
pressed as follows:
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In this study, eccentricity of geometry was investigated as shown in Fig. 3. In the case without eccentricity,
the horizontal coordinate is located at the mid surface of laminates as shown in Fig. 3a. Then, top and bot-
tom surface location has following relationships:

Zp = —2z,, Z,=—2Z, (16)

N
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Fig. 3. Laminates without (a) and with (b) eccentricity in the middle surface.
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In the case with eccentricity, the horizontal coordinate is located at the bottom surface of laminates as
shown in Fig. 3b. Then, bottom surface location and its first derivative are zero.

zy=2,=0 (17)

From Eqgs. (16) and (17), particular parts of interlaminar stresses can satisfy traction free boundary condi-
tions at top and bottom surfaces. From these procedures, the assumed stress functions satisfy all Cs bound-
ary conditions.

The governing equations in terms of in-plane stress functions are obtained by taking the stationary value
of complementary strain energy.

oU = //aéa,dndf //(S,jaj 81+ocAT>50',dydz (18)

Next, Eq. (8) is substituted into Eq. (18) and repeated integration by parts is applied to obtain
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These 2n coupled fourth and second order ordinary differential equations can be solved by 6n boundary
values. From C, boundary conditions, one can get boundary values of f;, f;, and p,. Integrated values of
three stresses are prescribed at each edge boundary. To get 6n boundary values, weighted-averaged stress
conditions are applied for representing CLT stress distribution.

N,
/ng/,zzdzz/<ﬁgi,zz+I_}{})g/,zzdzz/JZCLng,zde

N, zH ,
/0-4gj,zde = / (_.ﬁgi,z _.f;'gi,yz + )/;{—2> gj,z dZ = /GELng,de = 0 (21)

Ny,
/ O-()gj,zzdz = / (pigi,zz + ?) gj,zz dz= / O-ELng,zde

where o§'T and ¢§'T can be obtained from classical lamination theory (CLT).

We applied the forward, central and backward methods in order to compute derivatives in finite differ-
ence schemes. Selection of scheme among forward, central and backward difference schemes depends on
where the computation region belongs to among L, C and R regions shown in Fig. 3.

To measure the tendency of laminates to be delaminated, the delamination fraction proposed by Harri-
son and Johnson (1996) is employed in order to account for the combined effect of each stress component.

2 2 2
Omn On Oxn
Fp= + + 22
° \/<ZT) (ZSI> (Zﬂ) 22)

where ¢,,, is the interlaminar normal stress, ,, and J,,, are the interlaminar shear stress, and Z, Zg; and
Zs, are the allowable interlaminar stresses. The onset of delamination occurs when Fp > 1.

2.2. Examples of the analysis

In these examples, the two continuous sublaminates have the same eight-ply quasi-isotropic [£45/0/90];
layup and the dropped sublaminate contains [90,4] layup. Material systems is AS4/3502 graphite/epoxy
(Harrison and Johnson, 1996) and its material properties and those for the net resin are given as follows:

E1 =128 C‘IPB.7 E2 = E3 =113 GPa, G12 = G13 =6.0 GP(«].7 G23 =3.38 GP(«].7

(23)
Vg = Vi3 = 037 Vo3 = 035, Eresin =345 GPa, Viesin — 0.41
and the allowable interlaminar stresses are
Zg =Zyp =93.08 MPa, Z;=51.99 MPa (24)

First, the solution convergence of the present method is studied. The distribution of interlaminar shear
stress under longitudinal compression is shown in Fig. 4. The longitudinal direction is normalized by the
thickness of the dropped sublaminate (#4). Interlaminar shear stress is quickly converged as the number
of initially assumed out-of-plane stress functions is increased. It is observed that four-term approximation
provides converged interlaminar stress. Therefore, four-term approximation is conducted for the strength
analysis in the present paper. Interlaminar stresses are concentrated at the beginning point of dropped zone
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Fig. 4. Convergence of shear stress (,,) along the upper interface of four 90° dropped plies (N,, = —1 kN/m).

and disappear in the distance of about two times of dropped zone length. This is the same phenomenon
observed at the free edge of laminated structure (Pipes and Pagano, 1970). Therefore, it is expected that
the failure will occur at the beginning point of dropped zone.

Fig. 5 shows comparable results of delamination fractions along the upper interface of four 90° dropped
plies under the same load. Delamination fraction shows averaged delamination effect of interlaminar stres-
ses. Harrison and Johnson (1996) used a mixed variational formulation to predict interlaminar stresses near
the dropped plies. The number of primary variables of the mixed formulation is 23m, where m is the

0.003
u — : w/o ecc. (Harrison)
0.0025 = --: w/ ecc. (Harrison)
I = : w/o ecc. (present)
0.002 |- o : W/ ecc. (present )
0.0015 |
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Fig. 5. Delamination fraction along the upper interface of four 90° dropped plies (N,, = —1 kN/m).
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number of averaged sublaminates, whereas that of present method is 2n, where n is the number of initially
assumed basis functions. From this comparison of the number of primary variables, one can find that the
present method is simpler and more efficient than the mixed formulation. It is observed that the present
results show higher concentrations than those obtained by the mixed formulation. Maximum values of fail-
ure index show good correlations between present method and Harrison’s. This provides that the present
stress function-based approximation method can be used as a strength design tool of tapered laminates with
internal ply-drops.

3. Genetic algorithm (GA)
3.1. Outline of GA scheme

The flowchart of GA is illustrated in Fig. 6. To represent the ply angles in a layup as genes (in a chro-
mosome), three numbers are introduced with each gene having one of the values of 0, 1 or 2. The gene-0 and
gene-2 correspond to 0° and 90° plies respectively. The first (outermost), third, fifth, etc. occurrences of
gene-1 correspond to +45° while even-number occurrences correspond to —45°. Herein only half of the
plies are represented by the chromosome due to the symmetry of laminates.

After selection, a crossover, which uses one cut-point but is different from a simple crossover, is con-
ducted with a probability value of P.. One random cut-point is chosen first and two different schemes
are applied according to the position of the cut-point. When its position is on the continuous sublaminate,
the offspring is generated by combining the left segment of one parent with the right segment of the other
parent (Fig. 7a). But when the position is on the dropped sublaminate, the parents exchange the left part of
cut-point in dropped plies (Fig. 7b).

A recessive-gene-like repair strategy, introduced by Todoroki and Haftka (1998), is applied with mod-
ifications to handle the given constraints which are requirements of balanced laminate construction (bal-
ance constraint) and a limit of four contiguous plies with the same fiber orientation (four-contiguity
constraint). In the current study, the repair strategy is modified to satisfy the given constraints in all three
regions shown in Fig. 3. The continuous sublaminate satisfies the balance constraint, thus the dropped plies
also must be balanced. Moreover, four-contiguity constraint must be satisfied before and after tapering.

For the problem with multiple global optima, the optimization process that finds as many optima as pos-
sible is required. To accomplish this requirement, multiple elitism, which copy the best designs in current
generation into the next generation are adopted. The works of Cho and Rhee (2003, 2004) showed that a

Initial Population

i

lg---

< Cadlculation of Fitnesses >
Repairing Decoding Evaluation

yes

Limit of
Generation

Selection

Crossover + Mutation

P Multiple

Elitism

Calculation of Fitnesses ‘ | New Population
[

Fig. 6. Flowchart of genetic algorithm with a repair strategy and multiple elitism.
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Fig. 7. Crossover scheme using one cut-point: (a) cut-point on the continuous sublaminate, (b) cut-point on the dropped sublaminate.

GA module with a repair strategy and multiple elitism is efficient for the layup optimization considering
free-edge strength.

3.2. Multiple elitism

The schematic of multiple elitism is shown in Fig. 8. The top designs (elites) from the parent population
are selected and placed into the new population. The child designs required to fill the remainder of the new
population are created from the remaining parents that have not been selected as multiple elites, and then
placed into the new population. This selection scheme is computationally less intensive because fewer child
designs require fitness computation. The number of elites to be copied into the next generation (N,) is deter-
mined by the following equation, in which the more elites are selected as the population size increases:

PopSize + 10
N, = {HJ (25)
7
N™ Generation N-+1%" Generation
o i ol e e O o ol o o o )
rTTTTTT) rrTTTTTT
ELITES
Frrrrrerer) FrrrrTTT)
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CCCCTTTT ) e (N N O N
CCC T TT 01 FC Tt
CCCCUCUTT =1 R N O O O
GO O G O = = FECCC T
CCCCTTTT e FC )
CCC T T )= S N O N
CCC T T D=1 o O N O
| O O o sl (N G O

Crossover + Mutation

Fig. 8. Schematic of multiple elitism.
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where PopSize is the population size and the symbol | |” (floor) indicates the largest integer smaller than
or same as the number in the symbol. For example, when population size is 25, five elites are selected and
copied into the next generation.

3.3. Criteria to evaluate the performance of GA with multiple elitism

If the optimized results have been obtained, the performance of GA can be estimated for various pop-
ulation sizes. In the following study, four different criteria, which were previously proposed by Soremekun
et al. (2001), are applied to assess the performance of the present GA. The first criterion is the normalized
cost per genetic search, C,, determined by

C NO
C, :NZN (R = N") (26)

where N, is the number of generations per run, N is the number of child designs created in each generation,
and R is reliability. If GA is run &, times and succeeds in finding at least one of the several global optima
N,p, times of these runs, then the reliability R is calculated as the equation in the parenthesis of Eq. (26).

The second criterion is the average number of optima found per genetic search

DO}
Ay, = # (27)

where N! is the number of optima found in the ith optimization run.

The third criterion is defined as the cost per optimum found:

NN,
c, =gt (28)
A,

Table 1

Various parameters used in the application of GA

Parameters Values

Chromosome length 12

Upper limit of generation 250

Number of runs (NV,) 20

Population size 10-120

Probability of mutation 0.1

Probability of crossover 0.95

Table 2

Optimum layups and their fitness values (without eccentricity)

Loading Optimum layups Fitnesses (N/m)
Continuous sublaminate Dropped sublaminate

Shearing (N,) [0/45/0/90/—45/445,] [90,/0]; 9.7633 x 10°
[90/45/0/90/—45/445,] [90,/0]; 9.7616 x 10°
[0/45/90/0/—45/445,] [90,/0]; 9.7489 x 10°

Compression (N,,) [0/90,/45/0/903/—45] [0/£45]; 1.2067 x 10°
[0/90,/45/0/90/—45] [45/0/—-45); 1.2062 x 10°
[0/90/45/0,/—45/90,/0] [45/0/—-45]; 1.1955 x 10°
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The final criterion is the final population richness, which helps to monitor how the GA exploits global
optimum regions of the design space. Final population richness p, is defined as

Nay
P -

Table 3

- PopSize - N,

Optimum layups and their fitness values (with eccentricity)

(29)

Loading Optimum layups Fitnesses (N/m)
Continuous sublaminate Dropped sublaminate

Shearing (Ny) [+45,/45/90/—45] [90,/0]; 1.2026 x 10°
[+453/45/90/—45] [90,/0/90]; 1.1905 x 10°
[+45,/45/90/—45] [0/90/07 1.1717 x 10°

Compression (N,,) [45/903/—45/90,/0/90] [+45/0] 1.9749 x 10°
[90/45/905/—45/90/0/90] [+45/0] 1.9747 x 10°
[45/903/—45/90,/0/90] [45/0/—45]; 1.9745x 10°

Normalized Cost
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Cost per Optimum
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Fig. 9. Performance of GA for various population sizes under the shear loading (without eccentricity).
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where N,is the number of members in the final population of each run with fitness values within a certain
small amount (Af) of the optimum.

4. Results of optimization

The layup optimization for the maximum strength of the laminate without or with eccentricity was
executed for the cases of shear loading and compression. In the calculation of the interlaminar stresses,
two-term expansion (n =2) in Eq. (5), is used. These selections are sufficient to obtain accurate stresses.
The layup of dropped plies as well as that of continuous sublaminate is coded into a chromosome, i.e.,
a chromosome represents the continuous nine-ply sublaminate and half of the dropped six-ply sublaminate.
Thus the length of chromosome is twelve. The present analysis module can calculate the interlaminar stress
distributions for one layup within 0.7 s by using the computer with 3.4GHz Pentium IV CPU and 1GB
RAM.

Material properties and allowable stresses are adopted from the Egs. (23) and (24). Various parame-
ters—population size, probability of mutation, and probability of crossover, and so on—are given in Table
1. From authors’ experience, the cases with lower probability of mutation are better than those with higher
probability and the reliable range of the probability is from 0.05 to 0.25. In the present work, the proba-
bility of mutation is chosen as 0.1. The three optimum layups, which we wish to find, and their fitness values
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Fig. 10. Performance of GA for various population sizes under the compressive loading (without eccentricity).
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are summarized in Tables 2 and 3. To evaluate Narin Eq. (29), we consider the designs whose fitnesses are
within the deviation of about 8% from the optimal one. The numerical performances of GA for the cases of
the geometry without eccentricity are plotted for the various population sizes in Fig. 9 under the shear load-
ing and in Fig. 10 under the compressive loading. Those for the cases of the geometry with eccentricity are
plotted in Fig. 11 under the shear loading and in Fig. 12 under the compressive loading. Each left two fig-
ures are related with the cost of GA, and the right upper figure shows the average number of optima found
per genetic search, and the right lower one is for the final population richness. As the population size gets
larger, the GA requires more cost but finds more optima. By the implementation of the multiple elitism, the
average number of optima could be converged to the maximum value 3 for the cases of shear loading. How-
ever, for the compression loading cases, contrary to expectation, the GA could not find all three multiple
optima but found only two, because the third optimum layup has somewhat peculiar pattern of continuous
sublaminate compared with other optima for the case of “without eccentricity”. Similarly, for the case of
“with eccentricity”, the second optimum has somewhat different pattern of continuous sublaminate from
other optima. Thus the last population has more chance to contain two optima, one of which is from
two similar layup optima and the other of which is the optimum with different pattern layup.

Figs. 13 and 14 show the number of iterations in which each global optimum could be found. The best,
the second and the third optimum layups are represented by asterisk, circle and square, respectively. As the
population size becomes larger, all three multiple optima could be found in almost every run for the shear
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Fig. 11. Performance of GA for various population sizes under the shear loading (with eccentricity).
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(@) under the shear loading
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Fig. 14. Number of iterations in which each global optimum could be found (with eccentricity).
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Fig. 15. Interlaminar normal/shear stresses and delamination fraction in the optimum layups under the shear loading (without eccentricity).
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loading case. For the compressive loading case, all three multiple optima could not be found by a single
run, but could be obtained in a number of iterations with a sufficiently large population size. Actually
this means a limitation in performance of the present GA optimization module, but in a practical point
of view, the probabilistic optimization procedures like GA should be executed in such many times that
the reasonability of the results can be assured. Thus, the present GA tool can assure the reasonability of
its results.

To promote readers’ comprehension, distributions of the interlaminar normal and shear stresses and
delamination fraction in the optimum layups are plotted in Figs. 15 and 16 for the case of “without eccen-
tricity”, while those for the case of “with eccentricity’ are plotted in Figs. 17 and 18. Under the shear load-
ing, delamination fraction is determined mainly due to the interlaminar shear stress o,, while it is
determined by the interlaminar normal stress under the compressive loading. Three optimum layups have
similar distribution of delamination fraction under the shear loading, but for the case of compressive load-
ing, one layup has somewhat different delamination fraction distribution from other layups as mentioned
before.
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Fig. 16. Interlaminar normal/shear stresses and delamination fraction in the optimum layups under the compressive loading (without
eccentricity).
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Fig. 17. Interlaminar normal/shear stresses and delamination fraction in the optimum layups under the shear loading (with
eccentricity).

5. Conclusion

Layup optimization of the maximum strength of laminated composites with internal ply-drops under
longitudinal compression and in-plane shear loading conditions has been performed by genetic algorithm
(GA). Interlaminar stresses were obtained by the stress function based complementary virtual work prin-
ciple. Out-of-plane stress functions were expanded in terms of harmonic series through the thickness direc-
tion and initially satisfied the traction free boundary conditions of laminates. The stress function-based
complementary virtual work principle was simple and efficient in calculating the interlaminar stresses of
the composite laminates with dropped plies. This gave a great potential in the layup optimization for max-
imum interlaminar strength of the laminates with internal ply-drops. The layup optimization has been con-
ducted by genetic algorithm with repair strategy, which worked well in handling given constraints. The
repair strategy was applied in each region before tapering and after tapering. The multiple elitism was able
to find more solutions near the global optimum. This is important because the designer could have more
flexibility in selecting the layup of composite laminates. However, in compressive loading cases, the present
GA cannot find all three optima in a single run but only needs a sufficiently many iterations to find all op-
tima. Thus, the present GA can be applied as an optimization tool in a practical point of view.



S.Y. Rhee et al. | International Journal of Solids and Structures 43 (2006) 47574776 4775

© @
o o
= =
s g
5 o
N optimum : —h— 1st'0ptimuml
e LU —— 2nd optimum :
5 3rd optimum 3rd optimum :
45 - "' I { sbsnletietrlaled | I ] i’ ---------- 1; ----------- ir ----------- ;
1 0 1 2 3 4 5 2 2 3 4 5
(a) Yy (b) Yty
w10
L ISR T :
—4+— st optimum
c 4k | =& 2nd optimum
kel 3rd optimum
©
©
= [
[a =
X o
= ©
= =
b o=
£
©
©
Aot i i =
—— st optimum
—&— 2nd optimum
—=— 3rd optimum
A5 freeenenee . ;
i i
-1 0 1
(c) (d)

Fig. 18. Interlaminar normal/shear stresses and delamination fraction in the optimum layups under the compressive loading (with
eccentricity).

The layup optimization under general loading condition is not performed. Therefore, it is remarked that
the layup optimization under general loading conditions such as transverse tensile loading, thermal loading
and combined loading will be undertaken as a second phase of this study.
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